3.Proporcionalidad directa e inversa


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.Proporcionalidad directa e inversa"

Transcripción

1 EJERCICIOS PARA ENTRENARSE Proporcionalidad directa. Repartos 3.8 Los números 3,, 18 y forman una proporción. Calcula el valor de La tabla corresponde a dos magnitudes directamente proporcionales M y M. Halla la constante de proporcionalidad y completa la tabla. M M Constante de proporcionalidad: 4 1 0,8 1 0,8. Tenemos entonces: y 0,8 y 0 z 0,8 z, t 0,8 t 0,8 1 a 0,8 a 80 0 M ,8 80 M 1, La constante de proporcionalidad directa de dos números es 1,. El mayor es 4. Calcula el menor. Como el resultado del cociente es mayor que 1, el mayor es dividido por el menor, de modo que 4 1, 36. El menor es Tres fotografías valen euros, 6 fotografías cuestan 9 euros. Razona si el número de fotografías es directamente proporcional a su precio. Si es directamente proporcional, se tiene que conservar la constante de proporcionalidad. 0, ,6v Por tanto, el número de fotografías no es directamente proporcional a su precio. 3.3 Un coche consume, litros de gasolina cada kilómetros. Cuántos kilómetros podrá recorrer con 1 litros? Los litros de gasolina y los kilómetros recorridos son directamente proporcionales. Entonces:, El coche podrá recorrer 000 kilómetros.

2 3.33 Se sabe que de 1 gramos de remolacha se etraen de azúcar. Cuánta remolacha hay que adquirir para obtener 376 kilogramos de azúcar? Podemos establecer la proporción: De modo que kilogramos de remolacha Por un grifo salen 38 litros de agua en minutos. Cuántos litros salen en una hora y cuarto? Como eiste una proporcionalidad directa entre los litros de agua que salen del grifo y los minutos, podemos calcular los litros que saldrán en hora y cuarto, que son 7 minutos: L 3 8 En una hora y cuarto salen por el grifo 70 litros. 3.3 María, Nuria y Paloma han cobrado por un trabajo 344 euros. María ha trabajado 7 horas; Nuria, horas y Paloma, 4 horas. Qué cantidad le corresponde a cada una? Para que todas cobren por una hora lo mismo, tenemos que hacer un reparto proporcional del dinero según las horas trabajadas. Entonces: 7k k 4k k 344 k 1, De modo que María cobrará 1, 7,0 euros; a Nuria le corresponden 1, 7,0 euros, y Paloma ha ganado por el trabajo 1, 4 86 euros. Porcentajes y proporcionalidad 3.36 Epresa las siguientes razones en tantos por ciento, en tantos por uno y en tantos por mil. a) b) 9 c) 0 1 d) 3 Tanto por uno Tanto por ciento (%) Tanto por mil ( ) a) 0, b) 0, c) 1, , ,7 d) 1, , , Calcula el tanto por ciento de café que hay en una mezcla de 4 litros de café y 7 litros de agua. La proporción que se cumple es 4 7 7,14. Hay un 7,14 % de café en la mezcla Luis prepara una limonada con 1 litros de agua y 8 litros de zumo de limón. Cuál es el porcentaje de zumo de limón que hay en la limonada? Volumen total: L 8 De los 0 litros, 8 son de zumo de limón. Tenemos la relación: 40 % 0 0 El porcentaje de zumo de limón es del 40 %.

3 3.39 Un teléfono móvil cuesta 8 euros. Halla su nuevo precio si: a) Se rebaja un 6 %. b) Se encarece un 4 %. a) En este caso hay que restarle un 6 % a ,90 El nuevo precio es de 79 euros y 90 céntimos. b) En este caso hay que sumarle un 4 % a ,40 El nuevo precio es de 88 euros y 40 céntimos La subida salarial de una empresa en los últimos tres años ha sido del 3 %, % y 4 %. a) Cuánto cobra actualmente un empleado que cobraba hace tres años euros? b) En qué porcentaje se ha incrementado su sueldo después de tres subidas? a) Tenemos que ver qué resulta después de aplicarle un 3, un y un 4 % a 1 600: ,03 1,0 1, , El sueldo del empleado después de estos tres años será de euros con 0 céntimos. b) Veamos con qué porcentaje se corresponde la subida a 1 748,0 de , , ,0 1 9,6 6 El porcentaje total en que ha subido el sueldo del empleado en estos tres años es del 9,6 % El precio de un litro de combustible eperimentó diversas variaciones. En enero costaba 0,9 euros y en febrero bajó su precio un 8 %. En marzo subió un 3 % y en abril subió un %. a) Qué porcentaje ha variado su precio en total? b) Cuál es su precio en abril? a) Veamos a qué porcentaje equivale la aplicación de los tres porcentajes , Ha sido rebajado un 3,34 %. b) Aplicamos el porcentaje calculado en el apartado anterior al precio inicial del litro de combustible para saber su precio en abril. 0,9 1 3, 34 0,9 El precio del litro de combustible en abril es de 0,9 euros.

4 3.4 El Club del Libro tiene socios y cada año aumenta su número en un %. a) Cuántos socios tiene al cabo de años? b) Al cabo de años, consigue duplicar el número inicial de socios? a) Como tenemos que aplicarle a un porcentaje de subida del por ciento veces consecutivas, calculamos primero qué porcentaje final es: , 1, El porcentaje de aumento de socios al cabo de años es de un 61 %. Lo que quiere decir que después de años el número de socios es: socios b) Veamos cuál es el porcentaje de aumento después de años. 1, El número de socios después de años es: Así que después de años el número de socios es más del doble de los que había inicialmente. No solo se duplica, sino que se pasa del doble. Proporcionalidad inversa. Repartos 3.43 Di cuáles de las siguientes magnitudes son inversamente proporcionales. a) Tiempo que se tarda en limpiar un monte y número de personas que realizan la limpieza. b) Espacio recorrido por un móvil y tiempo empleado para recorrer dicho espacio. c) Tiempo que tarda en hacer un recorrido un avión y su velocidad. a) Son inversamente proporcionales. El doble de personas tardarían la mitad de tiempo en realizar la limpieza. b) No son inversamente proporcionales. En doble tiempo el móvil recorrería doble espacio, son directamente proporcionales. c) Son inversamente proporcionales. Si la velocidad fuera doble, el avión tardaría la mitad de tiempo en hacer ese recorrido Comprueba si la tabla representa cantidades de dos magnitudes inversamente proporcionales. En caso afirmativo, halla la constante de proporcionalidad y completa la tabla. M 4 8 M, 1,... Veamos cuáles son las constantes de proporcionalidad de cada columna: ; 4, ; 8 1,. Sí son inversamente proporcionales. La constante de proporcionalidad es, y para completar la tabla, el valor de... tiene que ser 0,1 ( 0,1 ).

5 3.4 El agua de un depósito se puede etraer en 00 veces con un bidón de 1 litros. Calcula cuántas veces se etraería con un bidón de litros. Relación de proporcionalidad inversa: veces Con un bidón de litros se etraería en 10 veces Realizamos un trabajo en meses entre 1 personas. Necesitamos hacerlo solo en 18 días. Cuántas personas debemos contratar? Dos meses son 60 días. Tenemos una relación de proporcionalidad inversa: Como ya trabajamos 1, necesitamos contratar Debemos contratar 8 personas Tres niños se comen un pastel en 16 minutos. En cuánto tiempo se lo comerían cuatro niños? Relación de proporcionalidad inversa: minutos Cuatro niños comerían en 1 minutos Reparte 7 87 en partes inversamente proporcionales a 3, y 6. k k k 1k k A 3 le corresponde A le corresponde A 6 le corresponde Reparte 78 en partes inversamente proporcionales a 4, 4 y k 1 4 k 1 k 78 9k 9k k 78 k , La parte que le corresponde a cada 4 es 60,1, y la que le corresponde a 18 es 7, Una ganadera tiene pienso para alimentar 30 vacas durante 4 días. Pero debe dar de comer a los animales durante 60 días, por lo que decide vender a las que no puede alimentar. Cuántas vacas debe vender? Relación de proporcionalidad inversa: Como puede alimentar a 40, debe vender vacas.

6 3.1 El número de vueltas que dan dos ruedas dentadas es inversamente proporcional al número de dientes de cada rueda. Una rueda dentada tiene 4 dientes y engrana otra rueda que tiene dientes. Cuántas vueltas dará la primera mientras la segunda da 10 vueltas? Por ser inversamente proporcionales se cumple que La rueda con 4 dientes da vueltas mientras la que tiene dientes da En una Olimpiada Europea de Matemáticas se conceden tres premios inversamente proporcionales a los tiempos empleados en la resolución de los ejercicios. Los tiempos de los tres primeros concursantes han sido 3, y 6 horas. Calcula cuánto dinero recibe cada uno si hay euros para repartir. Hacemos un reparto del dinero inversamente proporcional al tiempo tardado. 1 3 k 1 k 1 6 k k 6k k k De modo que el primer premio, que se corresponde con un tiempo de 3 horas, es de euros. El segundo premio, correspondiente a un tiempo de horas, es de euros. Y el tercer premio, para la persona que ha tardado 6 horas, es de 000 euros. Proporcionalidad compuesta 3.3 Una casa de acogida necesita 400 euros para alojar y dar de comer a 40 personas durante 1 días. Cuánto necesitará para alojar y alimentar a 0 personas durante días? 400 euros 40 personas 1 días euros 0 personas días Proporcionalidad directa Proporcionalidad inversa Se necesitarán 4 00 euros para alimentar a 0 personas durante días. 3.4 Si 18 camiones transportan 1 00 contenedores en 1 días, cuántos días necesitarán 4 camiones para mover contenedores? 18 camiones 1 00 contenedores 1 días 4 camiones contenedores días Proporcionalidad directa Proporcionalidad directa días En 1 días, 4 camiones moverán contenedores.

7 3. En un mes, un equipo de albañiles ha enlosado una acera de 160 metros. Cuántos metros enlosarán 1 albañiles en días? 1 mes ( 30 días) albañiles 160 metros días 1 albañiles metros Proporcionalidad inversa Proporcionalidad inversa m Quince albañiles en días enlosarán 80 metros. 3.6 Un campamento de la Cruz Roja que alimenta a refugiados tiene víveres para tres meses si se distribuyen raciones de 800 gramos por día. Cuál debería ser la ración si hubiese refugiados y estos víveres tuvieran que durar 4 meses? refugiados 3 meses 800 gramos refugiados 4 meses gramos Proporcionalidad inversa Proporcionalidad directa ,8 g Las raciones para refugiados durante 4 días serían de 14,8 gramos.

3.Proporcionalidad directa e inversa

3.Proporcionalidad directa e inversa EJERCICIOS PROPUESTOS 3.1 Escribe Halla el valor de para que se cumplan las siguientes proporciones. a) 1 2 4 3 b) 9 c) 1 3 60 4 0 3 6 12 a) 1 b) 9 40 4 3 60 6 c) 1 36 3 180 3.2 Luis y Carlos cambian divisas.

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

3 Proporcionalidad directa e inversa

3 Proporcionalidad directa e inversa 3 Proporcionalidad directa e inversa ACTIVIDADES INICIALES 3.I. Con la ayuda de tus amigos, estima cuántas personas caben en un metro cuadrado. Con ese dato, copia y completa la tabla hallando cuánta gente

Más detalles

de 75 cm. Cuando la primera ha dado 300 vueltas, cuántas vueltas habrá dado la segunda?

de 75 cm. Cuando la primera ha dado 300 vueltas, cuántas vueltas habrá dado la segunda? 1. Seis personas pueden vivir en un hotel durante 12 días por 792. Cuánto costará el hotel a 15 personas durante ocho días? 6 personas 12 días 792 15 personas 8 días x A más personas más precio. Directa.

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 4 En la última semana, los 0 monos de un parque natural han comido 0 kg de fruta. Acaban de traer monos más y disponemos de 080 kg de fruta. Para cuántos días tenemos? (Averigua previamente

Más detalles

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x 1 de 7 MAGNITUDES DIRECTAMENTE PROPORCIONALES Ejemplo 1: Un saco de patatas pesa 20 kg. Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. Cuántos sacos se podrán hacer? CASO 3 Nº sacos 1 2 y

Más detalles

1.- a) Escribe la razón entre los siguientes números: 24 y 6; 15 y 5; 49 y 7; 114 y 16.

1.- a) Escribe la razón entre los siguientes números: 24 y 6; 15 y 5; 49 y 7; 114 y 16. 3.- PORCENTAJES Y PROPORCIONALIDAD Al finalizar el sexto curso de Educación Primaria, los estudiantes deben comprender la relación entre fracciones, decimales y porcentajes, y usarla para resolver problemas

Más detalles

1. Para cada proporción identifica los componentes y completa la tabla: 2 y 4 4 y 8 2 y 8 4 y 4 0' 5. 6 y 8 3 y 4 6 y 4 3 y 8 2

1. Para cada proporción identifica los componentes y completa la tabla: 2 y 4 4 y 8 2 y 8 4 y 4 0' 5. 6 y 8 3 y 4 6 y 4 3 y 8 2 ACTIVIDADES-PÁG. 84 1. Para cada proporción identifica los componentes y completa la tabla: 2 4 4 8 6 8 3 4 3 9 4 12 Antecedentes Consecuentes Extremos Medios Constante de proporcionalidad 2 y 4 4 y 8

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

IES CUADERNO Nº 4 NOMBRE: FECHA: / / Proporcionalidad

IES CUADERNO Nº 4 NOMBRE: FECHA: / / Proporcionalidad Proporcionalidad Contenidos 1. Proporción numérica Razón y proporción 2. Proporcionalidad directa Razón de proporcionalidad Regla de tres directa Reducción a la unidad 3. Proporcionalidad inversa Constante

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

5 Proporcionalidad. 1. Razón y proporción. Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? Solución: 160 : 8 = 20 /kg

5 Proporcionalidad. 1. Razón y proporción. Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? Solución: 160 : 8 = 20 /kg 5 Proporcionalidad 1. Razón y proporción Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? P I E N S A Y C A L C U L A 160 : 8 20 /kg Carné calculista 1 409,6 : 68 C 6,02; R

Más detalles

7 MAGNITUDES PROPORCIONALES

7 MAGNITUDES PROPORCIONALES 7 MAGNITUDES PROPORCIONALES EJERCICIOS PROPUESTOS 7.1 Halla el valor de para que 3,, 27 y 18 formen una proporción. 3 2 7 3 18 27 4 27 4 2 18 27 7.2 Comprueba si los siguientes números forman una proporción.

Más detalles

4Soluciones a las actividades de cada epígrafe

4Soluciones a las actividades de cada epígrafe PÁGINA 64 Pág. 1 En esta unidad vas a revisar algunas técnicas y razonamientos que se utilizan en la resolución de situaciones cotidianas. Es decir, vas a fijar procedimientos que tienen una aplicación

Más detalles

Actividades de ampliación

Actividades de ampliación MATEMÁTICAS º SECUNDARIA CUADERNO DE ACTIVIDADES DE AMPLIACIÓN Nombre: Curso: Fecha de entrega: MATEMÁTICAS º ESO Números naturales. Divisibilidad. Explica cómo se puede calcular mentalmente cada una de

Más detalles

4 Proporcionalidad. 1. Razones y proporciones

4 Proporcionalidad. 1. Razones y proporciones 4 Proporcionalidad 1. Razones y proporciones Se han comprado 5 kg de melocotones por 10,5. Calcula mentalmente cuánto cuesta cada kilo. 10,5 : 5 = 2,1 /kg P I E N S A Y C A L C U L A 1 Calcula las razones

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

Problemas de proporcionalidad

Problemas de proporcionalidad Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

TEMA 4: PROPORCIONALIDAD Y PORCENTAJES

TEMA 4: PROPORCIONALIDAD Y PORCENTAJES TEMA : PROPORCIONALIDAD Y PORCENTAJES.1Razones y proporciones Página 90 ejercicio 1 Elige la respuesta correcta en cada caso: a) La razón de 5 y15 es: 1 2, 1 3, 2 3 5 15 15 5 5 5 1 3 Tareas 05-12-12: todos

Más detalles

REPASO DE LA PRIMERA EVALUACIÓN

REPASO DE LA PRIMERA EVALUACIÓN REPASO DE LA PRIMERA EVALUACIÓN º ESO. Escribe todos los divisores de: 7,, 8, y Sol: a),,,, 6, 8, 9,, 8,, 6, 7 b),,,, 6, 8,, c),,, 7,, 8 d),,, 9,, d),,, 6, 9, 8, 7,. Descompón en factores primos: 800,

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20 Estudiar en el libro de Texto: No PROBLEMAS. PROPORCIONALIDAD (1) Proporcionalidad directa e inversa Ejemplo 1. Proporcionalidad directa En un diario leemos que los anuncios que se pueden insertar en él

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q.

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q. ejerciciosyeamenes.com POLINOMIOS 1. Si P()= - +1 y Q()= -+, opera: a) P-Q b) P+Q c) P+Q P.Q Sol: a) P-Q= -6 +-1 b) P+Q= 1 - -6+7 c) P+Q= -+ P.Q= 1 5-1 +17 - -+. Si P()= - -+1, Q()= -+1 y R()= -6 +6-1,

Más detalles

Tema 7. Proporcionalidad

Tema 7. Proporcionalidad Matemáticas 1º ESO Ejercicios Tema 7 BLOQUE I: ARITMÉTICA Tema 7. Proporcionalidad 1. Calcula el número que falta x 14 a) 7 = 5 x b) = c) 28 9 36 a) 3,5 b) 20 c) 43,88 2,3 = 9,8 10,3 x 2. Indica si existe

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

3 = x PROPORCIONALIDAD. 01 Apoyándote en la definición, escribe alguna razón. 02 Escribe 2 números mayores de 23 y menores que 31 cuya razón sea 4/5

3 = x PROPORCIONALIDAD. 01 Apoyándote en la definición, escribe alguna razón. 02 Escribe 2 números mayores de 23 y menores que 31 cuya razón sea 4/5 IES PROF. JUAN BAUTISTA EL VISO DEL ALCOR TEMA 4.- Proporcionalidad. Ejercicios de Repaso y ampliación. PROPORCIONALIDAD 01 Apoyándote en la definición, escribe alguna razón 02 Escribe 2 números mayores

Más detalles

Problemas de Algebra Matricial

Problemas de Algebra Matricial Matrices Problemas de lgebra Matricial Matrices. Eplicitar las siguientes matrices. a) m=, n= a i i, b) m=, n= a si i=, a si i, i, c) m=, n= a, i, d) m=, n= a i i, i. Crear matrices de tal forma que cumplan

Más detalles

2. El largo de un buque, que es de 99 metros, excede en 3 metros a 8 veces el ancho. Hallar el ancho.

2. El largo de un buque, que es de 99 metros, excede en 3 metros a 8 veces el ancho. Hallar el ancho. Problemas. Un comerciante compra 5 trajes y 5 pares de zapatos por 6, pesos. Cada traje costó el doble de lo que costó cada par de zapatos más 5 pesos. Hallar el precio de los trajes y de los pares de

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 60 PRACTICA Calcula mentalmente: a) 2% de 400 b) 2% de 400 c) 2% de 80 d) 2% de 80 e) 7% de 400 f) 7% de 600 g) 20% de 2 000 h) 20% de 2 000 a) 00 b) 00 c) 20 d) 00 e) 300 f) 00 g) 400 h) 2

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte

Más detalles

4Soluciones a los ejercicios y problemas

4Soluciones a los ejercicios y problemas PÁGINA 75 Pág. 1 P RACTICA 1 Calcula mentalmente: a) 50% de 360 b)25% de 88 c) 10% de 1 375 d)20% de 255 e) 75% de 800 f) 30% de 150 a) 50% de 360 8 180 b) 25% de 88 8 22 c) 10% de 1 375 8 137,5 d) 20%

Más detalles

EJERCITACION SUMADA A LA DE LAS CLASES

EJERCITACION SUMADA A LA DE LAS CLASES EJERCITACION SUMADA A LA DE LAS CLASES PROPORCIONALIDAD 1.- Indica si hay proporcionalidad directa, inversa o si no hay ninguna Proporcionalidad: a) Cantidad de personas que viajan en un autobús y dinero

Más detalles

PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN

PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN 1º.- Un capital colocado al 10% simple durante un tiempo se transformó en 8.257 88, pero si hubiera estado colocado al 15% durante el mismo período

Más detalles

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

15 PARÁMETROS ESTADÍSTICOS

15 PARÁMETROS ESTADÍSTICOS EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. ENUNCIADOS Calcula mentalmente: a) 50% de 260 b) 0% de 500 c) 25% de 44 d) 20% de 500 e) 75% de 800 f) 6% de 250 2 Calcula: a) 2% de 242 b) 87% de 540 d) 2% de 600 e) 57% de 57 Por qué único número

Más detalles

Proporcionalidad numérica

Proporcionalidad numérica Proporcionalidad numérica Un pedazo de la Historia Por fin, Alí había conseguido sacar a Schoene del hotel, donde llevaba recluido cuatro días sin apartar la vista de aquel libro, que a intervalos hacía

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE

ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE 6to. Grado Universidad de La Punta CONSIDERACIONES GENERALES En este año nuestro desafío

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad?

1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad? 2.- OPERACIONES CON FRACCIONES Y DECIMALES Al finalizar el sexto curso de Educación Primaria, los estudiantes deben comprender los significados de las fracciones como partes de la unidad, como cocientes

Más detalles

EJERCICIOS PROPUESTOS. Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud.

EJERCICIOS PROPUESTOS. Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud. 7 SISTEMA DE MEDIDAS EJERCICIOS PROPUESTOS 7.1 Mide el segmento AB eligiendo como cantidad de referencia otro segmento de menor longitud. B A u El segmento AB contiene 5 veces a u. Luego mide 5u. 7.2 Observa

Más detalles

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO OPERACIONES BÁSICAS CON NÚMEROS NATURALES, ENTEROS, DECIMALES Y FRACCIONES (SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN) Y OPERACIONES COMBINADAS DE LAS ANTERIORES. 1. Realizar las siguientes operaciones con

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

Tema 2 (2 a parte) Razones y proporciones

Tema 2 (2 a parte) Razones y proporciones Tema 2 (2 a parte) Razones y proporciones Una razón es una relación entre dos cantidades. Ej: a) en una bolsa con bolas blancas y negras, la razón de bolas blancas a negras es de 2 a 7. b) en cierto examen,

Más detalles

Ejercicios para repasar y recuperar el. Área de Matemáticas de 1º ESO

Ejercicios para repasar y recuperar el. Área de Matemáticas de 1º ESO Octubre 01 º Cuadernillo Ejercicios para repasar y recuperar el Área de Matemáticas de 1º ESO Nota: Debes de presentarlo el día del º Parcial. ALUMNO: 1 1. Efectúa: a) 5 5 1 : 5 = b) 1 = c) 7 5 8 1 10

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 170

8Soluciones a los ejercicios y problemas PÁGINA 170 PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,

Más detalles

2Soluciones a los ejercicios y problemas PÁGINA 61

2Soluciones a los ejercicios y problemas PÁGINA 61 PÁGINA 61 Pág. 1 P RACTICA Fracciones y decimales 1 Expresa como un número decimal las siguientes fracciones: 9 1 1 5 1 5 9 6 00 990 9 5 5 1 0,6; 1, ;,8 ; 0,085 9 6 0, 185; 0,5 00 ; 1 0,590 990 Clasifica

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

1.. VALOR POSICIONAL DE CADA CIFRA EN UN NÚMERO DECIMAL.

1.. VALOR POSICIONAL DE CADA CIFRA EN UN NÚMERO DECIMAL. 1.. VALOR POSICIONAL DE CADA CIFRA EN UN NÚMERO DECIMAL. Un número decimal tiene dos partes: una parte entera, a la izquierda de la coma y una parte decimal a la derecha de la coma. Lectura y escritura.

Más detalles

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento?

PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? NÚMEROS RACIONALES PARA EMPEZAR.. Arquímedes nació en el año a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? x Han transcurrido años, siendo x el número de día del año actual.

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA. Matemáticas 3º eso

TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA. Matemáticas 3º eso TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA Matemáticas 3º eso La proporcionalidad es herramienta que se usa p contar número de individ en grandes poblacione Se elige una parte de l superficie, se realiza

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Matemáticas Problemas matemáticos 4º E.P.

Matemáticas Problemas matemáticos 4º E.P. Matemáticas Problemas matemáticos 4º E.P. Nombre: Curso: Una casa costaba el año pasado 137 284, y ahora cuesta 140 594. Cuánto ha aumentado el precio de la casa? Durante la jornada de la mañana, un taxista

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 Con los datos de la ilustración, calcula la distancia que recorre cada vehículo en una hora. Coche de caballos en min 0 km en 0 min Coche utilitario

Más detalles

CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO

CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO Potencias y raíces. Expresa en forma de potencia: a) 7 7 7 7 = b) 8 8 8 8 8 8 8 = c) 6 6 6 6 6 = d) 5 5 5 5 = e) 9 9 9 = f) 3 3 = Calcula las siguientes potencias:

Más detalles

FUNDAMENTOS DE MATEMÁTICAS PARA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR CEPA ROSALÍA DE CASTRO - LEGANÉS LA PROPORCIONALIDAD

FUNDAMENTOS DE MATEMÁTICAS PARA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR CEPA ROSALÍA DE CASTRO - LEGANÉS LA PROPORCIONALIDAD . RAZÓN Y PROPORCIÓN LA PROPORCIONALIDAD La razón entre dos números a y b es el cociente, nos indica el número de veces que a contiene b. Una proporción es una igualdad entre dos razones = se lee a es

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

Tema: Ecuaciones y sistemas de ecuaciones

Tema: Ecuaciones y sistemas de ecuaciones Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

Proporcionalidad. Objetivos. Antes de empezar. 1.Proporción numérica...pág. 62 Razón entre dos números Proporción numérica

Proporcionalidad. Objetivos. Antes de empezar. 1.Proporción numérica...pág. 62 Razón entre dos números Proporción numérica 4 Proporcionalidad Objetivos En esta quincena aprenderás a: Distinguir entre magnitudes directa e inversamente proporcionales. Resolver distintas situaciones sobre proporcionalidad directa e inversa con

Más detalles

NÚMEROS Y OPERACIONES

NÚMEROS Y OPERACIONES NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.

Más detalles

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 ACTIVIDADES DE REPASO MATEMÁTICAS 1º ESO NOMBRE: GRUPO:. Actividades a realizar: 1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 2) Calcula: a) 4 6 + 3 + 9-2 3 = b) 6 (3 + 7) -

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

UNIDAD 0. REPASO DE Nº NATURALES

UNIDAD 0. REPASO DE Nº NATURALES Departamento de UNIDAD 0. REPASO DE Nº NATURALES 1. En un edificio de 6 plantas hay tres viviendas por planta y en cada vivienda hay 9 ventanas. Si cada ventana tiene tres cristales cuántos cristales son

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS. RESUELTOS EN ABIERTO PAU Universidad de Oviedo Junio 996 005. En una confitería

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

3.- Un plano está dibujado a escala 1:20.000 y otro a escala 1:200.000: En cuál se ve lo representado con más detalle?

3.- Un plano está dibujado a escala 1:20.000 y otro a escala 1:200.000: En cuál se ve lo representado con más detalle? ACTIVIDADES 1.- De los siguientes pares de magnitudes cuáles son proporcionales y cuáles no lo son: A. El peso de una persona y su edad. B. Los kilómetros que recorre un ciclista y el precio de su bicicleta.

Más detalles

Operaciones con fracciones

Operaciones con fracciones Operaciones con fracciones SUMA Y RESTA DE FRACCIONES DEL MISMO DENOMINADOR Para sumar fracciones del mismo denominador se suman los numeradores se deja el mismo denominador. Para restar fracciones del

Más detalles

Tema 4. Números índice

Tema 4. Números índice Tema 4. Números índice Durante la explicación del tema anterior, el de las variaciones estacionales surgió la frase: calcular el índice estacional, este número indicó qué tan arriba o qué tan abajo estarían

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. En las siguientes expresiones, saca factor común

Más detalles

100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas.

100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas. Números racionales 1 PORCENTAJES o Un porcentaje es equivalente a una fracción con denominador y al número decimal correspondiente a la fracción. 65 65 % = = 0,65 o Para calcular el porcentaje de una cantidad

Más detalles

Avaluació competències bàsiques 2012-2013. modelo 3 (cas) Competencia en. matemáticas

Avaluació competències bàsiques 2012-2013. modelo 3 (cas) Competencia en. matemáticas Avaluació competències bàsiques 2012-2013 modelo 3 (cas) Competencia en matemáticas Hoja de contabilidad Para controlar el dinero que te van asignando tus padres y lo que vas gastando, has hecho la hoja

Más detalles

Carrera: Técnico Superior en Programación

Carrera: Técnico Superior en Programación 1 Sistema de dos ecuaciones lineales Resolver los siguientes sistemas de dos ecuaciones lineales en forma analítica y gráfica. Verificar los resultados obtenidos. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Más detalles

Razones y Proporciones. Guía de Ejercicios

Razones y Proporciones. Guía de Ejercicios . Módulo 2 Razones y Proporciones Guía de Ejercicios Índice Unidad I. Razones y Proporciones Ejercicios Resueltos... pág. 2 Ejercicios Propuestos... pág. 5 Unidad II. Cálculo de Porcentajes Ejercicios

Más detalles
1981 Capricorn poptop caravan | Make-up Sets | Um jeden Preis