3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:"

Transcripción

1 Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del ángulo interno, ángulo central). Análisis de la relación entre los elementos de la circunferencia y el polígono inscrito en ella. Intenciones didácticas: Que los alumnos: Establezcan que un polígono regular tiene lados iguales, ángulos interiores iguales, y que las medidas del lado y el ángulo interior determinan dicho polígono. Consigna: En equipo, hagan lo siguiente: 1. Utilizando las tiras de papel que se proporcionan, sin cortarlas, mediante dobleces únicamente, construyan el contorno de cada una de las siguientes figuras planas regulares: triángulo equilátero, cuadrado, pentágono y hexágono. Si requieren regla graduada y transportador, se la pueden solicitar al maestro. a) Cómo determinaron dónde debían hacer el doblez? b) Cómo determinaron la abertura con la que se debía hacer el doblez? 2. Comenten en cada equipo los procedimientos utilizados para obtener las figuras anteriores y escriban la secuencia de pasos para exponer ante el grupo los que resulten diferentes. 3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente: Nombre # de lados # de ángulos Medida del ángulo interior Triángulo Consideraciones previas: Respecto a la tarea 1: Para la realización de esta actividad es necesario preparar el siguiente material: Previendo que se formen equipos de cuatro alumnos, será necesario entregar a cada equipo cuatro tiras de 30 cm de largo por 1 cm de ancho, de manera que en cada equipo cada alumno construya una de las figuras propuestas. También es importante tener algunas reglas graduadas y transportadores por si hay alumnos que los solicitan.

2 En caso de que a los alumnos se les dificulte la identificación de las figuras planas, colocar en el pizarrón un cartel (preparado para este efecto) con las figuras que se pide obtener, sin nombrarlas o mostrar alguna de sus características. Es importante que se entienda que no se trata de doblar la tira y luego unir los extremos de la siguiente manera: Más bien, la figura debe ser plana, para que los alumnos necesariamente consideren los ángulos con los que deben hacer los dobleces: Si los estudiantes no saben usar el transportador para medir ángulos, el maestro debe enseñarles cómo se hace. Respecto a la tarea 2: Es probable que los alumnos hagan dobleces sin anticipar que los lados y ángulos deben ser lo más parecidos posible (en teoría, deben ser iguales, pero por las dificultades para hacer los dobleces se admite cierto margen de error). En ese caso el maestro puede hacer notar que la figura es muy distinta de la que está en el pizarrón. Otra dificultad es que, como no conocen la medida del ángulo interior, deben encontrar la abertura adecuada por ensayo y error, así que tendrán que intentarlo varias veces hasta que coincidan los extremos del papel. A partir de eso vale la pena concluir que en un polígono regular todos los lados son iguales entre sí, los ángulos interiores también, y que conociendo estas medidas es posible trazar el polígono.

3 Respecto a la tarea 3: En caso de que sea necesario, utilizar el cartel que se preparó con las figuras para la medición de los ángulos de las figuras construidas. Conviene analizar en colectivo los resultados de la tabla y discutir los resultados diferentes. Es muy probable que en las figuras que hayan construido con las tiras de papel, los ángulos no midan exactamente lo mismo que los de los polígonos del cartel, pero sí se puede establecer un margen de error explicable a partir de las dificultades al hacer los dobleces, para distinguir un error de medición de un error conceptual, como, por ejemplo, no intentar que los ángulos sean iguales. También vale la pena analizar las regularidades de la tabla, por ejemplo, en todos los casos el número de lados coincide con el número de ángulos. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

4 Plan de clase (2/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del ángulo interno, ángulo central). Análisis de la relación entre los elementos de la circunferencia y el polígono inscrito en ella. Intenciones didácticas: Que los alumnos dibujen un hexágono regular inscrito en una circunferencia estimando la medida de cada lado o bien a partir del centro y el ángulo central. Consigna: Haz lo siguiente: 1. Construye un hexágono regular inscrito en la siguiente circunferencia. (Es decir, los vértices del hexágono deben ser puntos de la circunferencia). Pueden usar regla, compás, transportador, escuadra si los necesitan. Cuál fue el procedimiento que siguieron para trazarlo? 2. Divide el hexágono construido en triángulos congruentes que tengan un vértice común. Qué tipo de triángulos se forman al dividir el hexágono? Justificar la respuesta. Consideraciones previas: Respecto a 1: Es importante tener juegos de geometría por si los alumnos los solicitan. Los alumnos pueden utilizar procedimientos como los siguientes: a) A ojo, es decir, tomarán seis puntos de la circunferencia que la dividan en seis partes lo más parecidas posible. Esos puntos serán los vértices del hexágono. b) Marcar cualquier punto en la circunferencia, y a partir de él estimar el tamaño del lado e iterarlo seis veces (ya sea con regla o compás), hasta hacer que el último vértice coincida con el primero. c) A partir del centro de la circunferencia y del ángulo central: se traza una diagonal cualquiera, y después dos más de manera que el ángulo central sea de 60 grados (360/6). La intersección de las tres diagonales con la circunferencia determinan los seis vértices del hexágono. Si en este procedimiento los alumnos no logran ubicar el centro de la circunferencia, se les puede sugerir el recurso de marcar tres puntos sobre la Comentario [t1]: Edición. Insertar un dibujo de un hexágono en el que se muestre claramente el ángulo central.

5 circunferencia, unirlos para trazar un triángulo y localizar el cruce de las mediatrices, que a la vez es el centro de la circunferencia. En la puesta en común es importante destacar las ventajas y desventajas de cada procedimiento. Se pueden hacer preguntas como: cuál es más preciso? Cuál es más difícil? Respecto a 2: Aquí se introduce el término congruencia, concepto que no será motivo de estudio en este momento, se puede dejar sólo la idea que dos triángulos congruentes son dos triángulos iguales en forma y tamaño. En caso de que haya tiempo, se les pedirá que tracen otro polígono regular inscrito en la circunferencia, que lo triangulen y digan qué tipo de triángulos se formaron ahora. Si esto ocurre, en la puesta en común se puede destacar que el hexágono es la única figura en la que se forman triángulos equiláteros, en los otros polígonos siempre se forman isósceles. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

6 Plan de clase (3/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del ángulo interno, ángulo central). Análisis de la relación entre los elementos de la circunferencia y el polígono inscrito en ella. Intenciones didácticas: Que los alumnos: Utilicen las mediatrices de los lados de un cuadrado para trazar un octágono regular. Averigüen como puede trazarse un hexágono regular con base en la medida de un lado. Consigna: Resuelve lo siguiente: 1. A partir de la siguiente figura construye un octágono regular inscrito en la circunferencia. Describe con claridad el procedimiento empleado y justifícalo. PROCEDIMIENTO: 2. Traza un cuadrado cuyo perímetro sea 48 cm y su área sea 144 cm 2. Cuánto suman los ángulos interiores de un cuadrado? 3. Traza un hexágono regular que mida 5 cm por lado y después contesta las preguntas que siguen. Cuánto mide un ángulo interior del hexágono regular? Cuál es el área del hexágono que trazaste? Consideraciones previas: Los alumnos pueden usar el juego de geometría: compás, transportador, regla graduada, escuadra. El problema 1 puede resolverse trazando las mediatrices de cada lado del cuadrado. Las intersecciones de éstas con la circunferencia determinan los cuatro vértices que faltan.

7 Respecto al problema 3, los alumnos saben que al triangular un hexágono regular se forman triángulos equiláteros. Así, sabiendo que el lado mide 5 cm pueden trazar los seis triángulos y obtener el hexágono. O bien, en el primer plan de clase determinaron la medida del ángulo interior del hexágono. Si además saben que el lado mide 5 cm pueden trazar lado por lado hasta tener el hexágono. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

9 cm. 11 cm. Medidas de los lados de la

9 cm. 11 cm. Medidas de los lados de la ACTIVIDAD 1 En equipos resolver el siguiente problema: 1. Los lados de un cuadrilátero miden 5, 9, 2 y 11 cm, tal como se muestra en la figura; si se realiza una reproducción a escala y el lado correspondiente

Más detalles

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a):

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.1.2 Construcción de figuras congruentes o semejantes (triángulos, cuadrados

Más detalles

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: FEyM Contenido: 8.3.3 Formulación de una regla que permita calcular la suma de los

Más detalles

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir:

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir: Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.3.3 Resolución de problemas geométricos mediante el teorema de Tales. Intención didáctica. Que

Más detalles

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 secundaria Eje temático: MI Contenido: 7.2.7 Identificación y resolución de situaciones de proporcionalidad directa

Más detalles

Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a):

Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: FE y M Contenido: 8.1.5 Resolución de problemas que impliquen el cálculo de áreas de

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS

INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS GEOMETRIA POLÍGONOS (1) Si un polígono tiene un ángulo central de 45º Cuántos lados tiene? (2) Inscribir en distintas circunferencias los siguientes polígonos: a) Triángulo equilátero b) Pentágono regular

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

Alumna(o): Grupo: N.L

Alumna(o): Grupo: N.L MISCELANEA DE MATEMATICAS FEBRERO CICLO ESCOLAR 2012-2013 Alumna(o): Grupo: N.L Resuelve los siguientes problemas 1.-Mide las dimensiones del siguiente rectángulo. Cuál es el área de la siguiente figura?

Más detalles

Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 secundaria Eje temático: SNyPA Contenido: 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5.

Más detalles

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.2.1 Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas

Más detalles

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a): Caminos rectos Plan de clase (/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 7..2 Representación de números fraccionarios y decimales en la recta numérica

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios.

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios. Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.4.4 Análisis de la regla de tres, empleando valores enteros o fraccionarios. Intenciones didácticas:

Más detalles

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA)

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3-1 Desempeño: Determina la clasificación

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

Nombre Grupo N.L. fecha Curso: Matemáticas 3 Apartado: 2.3, 2.4 Eje temático: FEM Tema: Formas geométricas

Nombre Grupo N.L. fecha Curso: Matemáticas 3 Apartado: 2.3, 2.4 Eje temático: FEM Tema: Formas geométricas Consigna: dibuja triángulos (de diferente tamaño) cuyos ángulos midan: a) 60º, 60º y 60º b) 90º, 45º y 45º c) 90º, 60º y 30º Consigna: agrupen sus triángulos, de acuerdo con las medidas de sus ángulos.

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un segmento equidista

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor: (a):

Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.2 Análisis de las secciones que se obtienen al realizar cortes a un cilindro o a un cono recto.

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

MATEMÁTICAS I SEGUNDO BIMESTRE

MATEMÁTICAS I SEGUNDO BIMESTRE MATEMÁTICAS I SEGUNDO BIMESTRE Contenido: 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5. Distinción entre números primos y compuestos. Intenciones didácticas: Que los alumnos formulen

Más detalles

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias.

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias. 5.- FIGURAS PLANAS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir figuras geométricas usando el vocabulario apropiado; usar instrumentos de dibujo (regla, compás, escuadra,

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados Subject Matemáticas Grade 8 UoL4 El triángulo: un polígono con propiedades especiales Title of LO3 Identificación de los puntos y las líneas notables del triángulo de Grado: 7 aprendizaje relacionado (pre

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

Intención didáctica: Que los alumnos definan a los prismas y a las pirámides, así como a sus alturas es la intención de este desafío.

Intención didáctica: Que los alumnos definan a los prismas y a las pirámides, así como a sus alturas es la intención de este desafío. 6. Desplazamientos Intención didáctica: Que los alumnos definan a los prismas y a las pirámides, así como a sus alturas es la intención de este desafío. Consigna: En parejas, hagan lo que se pide en cada

Más detalles

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a):

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: SN y PA Contenido: 8.3.2 Resolución de problemas multiplicativos que impliquen el

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

2.- Escribe la lectura o escritura de las siguientes fracciones:

2.- Escribe la lectura o escritura de las siguientes fracciones: EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.

Más detalles

1º ESO TEMA 12 FIGURAS PLANAS

1º ESO TEMA 12 FIGURAS PLANAS 1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Polígonos Polígonos especiales: Cuadriláteros y triángulos

Polígonos Polígonos especiales: Cuadriláteros y triángulos Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Página 1 de 19 EXAMEN A: Ejercicio nº 1.- Traza por cada punto, con regla y escuadra, una recta paralela a la recta r. Ejercicio nº 2.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Utiliza más de un procedimiento en la construcción de un teselado; identifica que un teselado es un principio de orden.

Utiliza más de un procedimiento en la construcción de un teselado; identifica que un teselado es un principio de orden. TESELADO 14 Utiliza más de un procedimiento en la construcción de un teselado; identifica que un teselado es un principio de orden. El Profesor explica qué es el teselado, sus características y sus aplicaciones.

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Diferencias entre Figuras y

Diferencias entre Figuras y 10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas.

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Identifica las clasificacione s de los polígonos regulares Power Point: clasificación y elementos de los

Más detalles

Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación.

Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación. Matemáticas 8 Básico Eje temático: Geometría Introducción La prueba del subsector de Educación Matemática evalúa el logro de los OF- CMO establecidos en el marco curricular del segundo ciclo de Educación

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

Carrera: Diseño Industrial

Carrera: Diseño Industrial POLÍGONOS 1) Dados los siguientes polígonos se pide determinar cuales de ellos son cóncavos y cuales convexos. Justifique sus respuestas. a) b) c) 2) En los polígonos graficados a continuación indique

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. La circunferencia (p. 31) El cerebro humano es muy bueno

Más detalles

TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3

TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3 TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3 MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: 1. Qué es un número primo?. Qué es un número compuesto? 3. Escribe los primeros 0 números

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo 1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

Estuvieron sus opiniones cercanas a este hecho?

Estuvieron sus opiniones cercanas a este hecho? Dibujen en una hoja cuadriculada un triángulo y completen un rectángulo de tal manera que el triángulo quede dentro, como en la figura. Calculen en cm 2 el área aproximada del triángulo. Calculen en cm

Más detalles

LA FORMA GEOMÉTRICA. Como base estructural para la composición. Colmena. Como medio para representar formas detalladas y precisas.

LA FORMA GEOMÉTRICA. Como base estructural para la composición. Colmena. Como medio para representar formas detalladas y precisas. LA FORMA GEOMÉTRICA LA FORMA GEOMÉTRICA La forma geométrica aparece cuando los elementos básicos que la componen se organizan de acuerdo a reglas matemáticas. Son formas con más regularidad, definición

Más detalles

Tema 3 EXPLORANDO EL MUNDO DE LOS POLÍGONOS

Tema 3 EXPLORANDO EL MUNDO DE LOS POLÍGONOS Tema 3 EXPLORANDO EL MUNDO DE LOS POLÍGONOS Aprendizajes esperados: Resuelve problemas que implican el cálculo de cualquiera de las variables de las fórmulas para calcular el perímetro y el área de triángulos,

Más detalles

Título de la lámina 1-

Título de la lámina 1- pellido pellido, Nombre 1- Empleando la escuadra y el cartabón rellena los tres espacios a continuación con paralelas a las direcciones dadas. Procura que la distancia entre las paralelas sea la misma

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: Duración: 8 HORAS Asignatura: Geometría ESTÁNDAR: Generalizo procedimientos de cálculo válidos para

Más detalles

IES LOS PEDROCHES. Geométrico

IES LOS PEDROCHES. Geométrico Geométrico Relaciones Trazar y acotar en mm. sobre cada uno de los segmentos correspondientes, la distancia entre cada par de elementos dados: Puntos P y Q, rectas r y s y circunferencia de centro O. +Q

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

UNIDAD 11 Matemáticas

UNIDAD 11 Matemáticas UNIDAD 11 AR 1 Nombra estos ángulos según sus aberturas: A^ B^ C^ D^............ 2 Observa y colorea. De rojo y azul, dos ángulos adyacentes. De verde, dos ángulos opuestos por el vértice. De amarillo

Más detalles

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA

TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA Actividades de Ingreso Año 2009 Profesorado

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL

Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL Geometría Básica 43 POLIGONOS UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL SEGMENTOS CONCATENADOS Y CONSECUTIVOS Consideremos los segmentos ab y bc, donde

Más detalles

Sorprende por sus propiedades, y por lo inesperado de los resultados que se obtienen al cortarla convenientemente.

Sorprende por sus propiedades, y por lo inesperado de los resultados que se obtienen al cortarla convenientemente. CON UNA TIRA DE PAPEL CINTA DE MÖBIUS Una tira de Möbius se hace fácilmente con una tira lisa de papel corriente: primero se da media vuelta a la tira y después se unen los extremos para obtener un anillo

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz. Se debe incluir

Más detalles

TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS

TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRIÁNGULO, HEXÁGONO Y DODECÁGONO nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-4 A continuación, con

Más detalles

PROBLEMAS DE CORTE EUCLIDIANO

PROBLEMAS DE CORTE EUCLIDIANO PROBLEMAS DE CORTE EUCLIDIANO Sugerencias para quien imparte el curso El alumno debe comprender las definiciones de las rectas notables de un triangulo, de tal forma que pueda aplicar lo aprendido en esta

Más detalles

CUADERNO DEL ALUMNO/A

CUADERNO DEL ALUMNO/A 6º Primaria Curso 2013/14 CUADERNO DEL ALUMNO/A ACTIVIDADES INICIALES DE MATEMÁTICAS APELLIDOS: NOMBRE: Nº: FECHA: 1. Completa con cifras o letras según corresponda. 870.400: Ochenta y tres mil cuatrocientos

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles
DIE GEHEIME WELT DER TEMPLER | Aventura | Voir Film