PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO"

Transcripción

1 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo que la tensión admisible del acero es σ adm = 140 MPa y el módulo de elasticidad E = MPa, se pide calcular la carga máxima que se puede aplicar a dicho soporte: a)- Aplicando la fórmula de Euler. b)- Aplicando el método de los coeficientes ω. Se explicará la discrepancia de los resultados obtenidos Un soporte biarticulado se quiere construir mediante dos UPN-180. Hallar la relación de cargas críticas de las dos configuraciones de la figura

2 Una columna está formada x por un perfil IPE-100 cuyas secciones extremas se encuentran en dos superficies rígidas separadas l = 150 cm. En el plano xy la columna está l =150 cm z IPE-100 y biempotrada mientras que en el plano xz es biarticulada. A A Sección AA Sabiendo que a una temperatura de t 0 =18 ºC la columna se encuentra sometida a una fuerza de compresión N 0 = 200 N, se pide calcular la temperatura máxima t que puede alcanzar la columna, si se toma como coeficiente de seguridad a pandeo n = 2. Datos: E = 200 GPa α = 12 x 10-6 ºC -1 σ e = 179 MPa Se considera el sistema formado por dos barras de acero de sección recta cuadrada de 3 cm de lado, situadas en un plano vertical, con la disposición indicada en la figura. Las articulaciones A y C de los apoyos fijos, así como la articulación B común a las dos barras, son rótulas cilíndricas de ejes perpendiculares al plano xy, lo que permite suponer que a efectos de pandeo en el plano xz las dos barras están biempotradas. Calcular la carga máxima P que se puede aplicar en la articulación B en dirección paralela al eje x, para un coeficiente de seguridad al pandeo n = 2. Datos: E = 210 GPa σ adm = 200 MPa

3 La estructura plana de la figura está constituida por un cable anclado en B y soldado al extremo superior A de una barra vertical de sección circular de radio R = 10 mm. Determinar el máximo valor de la fuerza F si el material de la barra es acero A-42 de σ adm = 150 MPa (considérese que la barra se encuentra biarticulada) La estructura de la figura está constituida por dos barras, AB y BC, de sección circular de diámetros 20 mm y 8 mm, respectivamente. El material de las barras es acero A-42 de σ adm = 250 MPa. Hallar el máximo valor de la carga P en un número entero de Newton. Nota: Se considerará el pandeo solo en el plano de la estructura Un angular de lados iguales L 35 x 5, de acero A-42, de 1 m de longitud, está empotrado por ambos extremos y debe soportar una carga de compresión P. Hallar el valor máximo de P (σ adm = 200 MPa)

4 Un soporte constituido por un angular L 80x40x8 de extremos articulados mediante rótulas esféricas, debe soportar una carga de compresión P = 1500 kp. 1º.- Calcular la máxima longitud del soporte para que éste no pandee aplicando la fórmula de Euler. 2º.- Igual que en el apartado 1º, pero aplicando el método de los coeficientes ω. 3º.- Explicar la posible discrepancia de resultados obtenidos en los dos apartados anteriores. Datos: Material: Acero A-42 E = kp/cm 2 σ e = 2600 kp/cm Un soporte de una nave industrial tiene una sección formada por dos UPN 200 en cajón, tal como se indica en la figura. El extremo inferior del soporte está empotrado en todas las direcciones, en tanto que el extremo superior está apoyado en la dirección y, pero empotrado en la dirección z. Si el soporte está sometido a un esfuerzo de compresión pura de 500 kn, se pide determinar su máxima altura. Datos: Acero A-42 σ adm = 200 MPa

5 Una cabria se compone de dos puntales de madera AC y BC y de un tirante de acero DC, tal como se indica en la figura. Los puntales tienen sección cuadrada y el tirante es de sección circular. Del extremo cuelga un peso de 20 kn. Se pide determinar: 1.- Diámetro del tirante si la tensión admisible del acero es 60 MPa. 2.- Lado de la sección de los puntales, sabiendo que la tensión crítica teórica de pandeo (en MPa) tiene como expresión en función de la esbeltez λ: σ c = 29,3 0,194λ λ < σ c = λ λ Un soporte empotrado-libre de longitud L = 4 m, está sometido a una carga P = kp en su extremo superior. Calcular el espesor de la sección (redondeando a un número entero de mm) si ésta es tubular con diámetro exterior D e = 20 cm. Datos: Acero A-42 σ adm = 1500 kp/cm 2

6 Una plataforma rectangular de gran rigidez, está apoyada en sus cuatro vértices sobre cuatro columnas iguales, perpendiculares a la misma. Los apoyos sólo transmiten fuerzas perpendiculares a la plataforma. Las columnas son tubos de sección circular de 3 mm de espesor de pared y 10 m de altura, empotrados en su base. Las dimensiones de la plataforma son 8x4 m. Sobre la plataforma actúa una carga perpendicular a la misma de 500 kn, situada sobre el eje de simetría mayor del rectángulo, a 2 y 6 m. De los extremos del mismo. Sabiendo que los tubos son de acero A-42, y que los diámetros exteriores de los mismos son múltiplos de 5, cuando éstos se expresan en cm, se desea conocer el diámetro de los mismos, siendo σ adm = 170 MPa El soporte de la figura es de sección rectangular y tiene los extremos biarticulados en el plano xz y biempotrados en el plano xy. Calcular las dimensiones de la sección recta para que el plano de pandeo esté indeterminado. Datos: P = 12 kn L = 2 m E = MPa Coef. de seg. a pandeo: n =

7 Dimensionar la barra esbelta de la figura de módulo de elasticidad longitudinal E = 2, kp/cm 2 constituida por un perfil UPN, siendo las condiciones de sustentación en el plano zx empotrada-empotrada. Tómese un coeficiente de seguridad al pandeo 3, Se quiere montar un mástil formado por dos UPN-260, empotrado en su base, de 25 m de altura, y en su extremo superior se encuentran amarrados dos cables cuyos otros extremos se fijan al suelo, de tal forma que los cables y el poste están en el mismo plano vertical, y el ángulo que forman los cables con el suelo es de 60º. La tensión normal de los cables es de 50 kn cada uno. Se desea conocer: 1.- Sobrecarga máxima que puede situarse en el extremo superior del poste. 2.- Croquis en planta acotado de la sección del poste, indicando la situación de los cables. 3.- Coeficiente de seguridad del poste con la sobrecarga anterior. Datos: Acero A-42 σ e = 260 MPa σ adm = 170 MPa E = MPa El poste inclinado de la figura tiene como sección un perfil HEB 100. Determinar la máxima carga vertical (hacia abajo) que se puede aplicar al extremo, indicando la disposición de la sección respecto al plano vertical. Datos: Acero A-42 σ adm = 250 MPa

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

Flexión Compuesta. Flexión Esviada.

Flexión Compuesta. Flexión Esviada. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada

Más detalles

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular

Más detalles

Análisis de Tensiones.

Análisis de Tensiones. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará

10. (B 1.52) Se desea considerar un diseño alterno para dar soporte al elemento BCF del problema anterior, por lo que se reemplazará TALLER Solucione los siguientes ejercicios teniendo en cuenta, antes de resolver cada ejercicio, los pasos a dar y las ecuaciones a utilizar. Cualquier inquietud enviarla a juancjimenez@utp.edu.co o personalmente

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

********************************************************************** En primer lugar hallaremos la excentricidad de la carga:

********************************************************************** En primer lugar hallaremos la excentricidad de la carga: 31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************

Más detalles

Análisis Estructural 1. Práctica 1

Análisis Estructural 1. Práctica 1 Análisis Estructural 1. Práctica 1 Estructura para nave industrial 1 Objetivo Esta práctica tiene por objeto el diseñar y estudiar el comportamiento de la estructura principal de un edificio industrial

Más detalles

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide: Elasticidad resistencia de materiales Tema 2.3 (Le de Comportamiento) Nota: Salvo error u omisión, los epígrafes que aparecen en rojo no se pueden hacer hasta un punto más avanzado del temario Problema

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1 CURSO 2010/2011 PUENTES I PRACTICA 1 En la figura se muestra la sección transversal de un puente formado por cinco vigas prefabricadas doble T de hormigón pretensado separadas 2,635 metros entre sí. La

Más detalles

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita.

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita. PROBLEMA 1 La pieza de la figura, que ha sido fabricada con acero forjado de resistencia última 750 MPa y densidad 7850 kg/m 3, sirve intermitentemente de soporte a un elemento de máquina, de forma que

Más detalles

Tema 5 : FLEXIÓN: TENSIONES

Tema 5 : FLEXIÓN: TENSIONES Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES EJERCICIOS PROPUESTOS Hoja 6 Norma EA-95 1. a) En la viga continua isostática de la figura, representar las siguientes líneas de influencia,

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

MECÁNICA II CURSO 2006/07

MECÁNICA II CURSO 2006/07 1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128

ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128 ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 18 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.

Más detalles

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil 4- Torsión Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 4. Torsión 4.1 Hipótesis básicas. Elementos de sección recta circular. Esfuerzos generados por efectos de torsión. 4.2

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17 1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad

Más detalles

Estructuras de acero: Problemas Cercha

Estructuras de acero: Problemas Cercha Estructuras de acero: roblemas Cercha Se pretende dimensionar las barras de la cercha de una nave situada en Albacete, de 8 m de luz, 5 m de altura de pilares, con un 0% de pendiente de cubierta. La separación

Más detalles

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido:

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido: PROBLEMAS ENSAYOS 1. Un latón tiene un módulo de elasticidad de 120 GN/m 2 y un límite elástico de 250 10 6 N/m 2. Una varilla de este material de 10 mm 2 de sección y 100 cm de longitud está colgada verticalmente

Más detalles

E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS U. DE LA CORUÑA Asignatura: Estructuras Metálicas Curso: 4º Hoja de prácticas tema 7: Uniones

E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS U. DE LA CORUÑA Asignatura: Estructuras Metálicas Curso: 4º Hoja de prácticas tema 7: Uniones E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS U. DE LA CORUÑA Asignatura: Estructuras Metálicas Curso: 4º Hoja de prácticas tema 7: Uniones Ejercicio 1: En la unión viga-pilar de la figura se desea

Más detalles

TALLER # 1 ESTÁTICA. Figura 1

TALLER # 1 ESTÁTICA. Figura 1 TALLER # 1 ESTÁTICA 1. Una barra homogénea de 00N de peso y longitud L se apoya sobre dos superficies como se muestra en la figura 1. Determinar: a. El valor de la fuerza F para mantener la barra en la

Más detalles

Análisis Estructural 1. Práctica 2. Estructura de pórtico para nave industrial

Análisis Estructural 1. Práctica 2. Estructura de pórtico para nave industrial Análisis Estructural 1. Práctica 2 Estructura de pórtico para nave industrial 1. Objetivo Esta práctica tiene por objeto el dimensionar los perfiles principales que forman el pórtico tipo de un edificio

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2002-2003 MATERIA: MECÁNICA Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez 2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Calcular el soporte extremo de la nave, la placa de anclaje, si es necesario, las cartelas, del supuesto recogido en la figura, sabiendo que: La altura del pilar es de 5 m. La separación entre pilares

Más detalles

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de

Más detalles

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011

UNASAM FIC PRACTICA DIRIGIDA SOBRE MOMENTO TORQUE OLVG 2011 1. Determine el momento de la fuerza F con respecto al punto O: (a) usando la formulación vectorial, (b) la formulación vectorial. 6. Determine el momento de la fuerza con respecto al punto A. Exprese

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

La carga uniforme que actuará sobre esta cercha:

La carga uniforme que actuará sobre esta cercha: c 1,75 m La carga uniorme que actuará sobre esta cercha: Siendo: 1 Pr p luz P r carga por nudo real, es decir, la que es debida al peso real de la cercha. P total c arg as verticales + conducciones + P

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estructuras de acero: Problemas Pilares Dimensionar un pilar de 4 m de altura mediante un perfil, sabiendo que ha de soportar una carga axial de compresión F de 400 una carga horiontal P de 0, que estos

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo nueve: Pandeo DOS 6. Método omega. General. Este método simplificado utiliza un coeficiente de seguridad establecido en tablas y determina las cargas y tensiones

Más detalles

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA

Capítulo 1 SEMINARIO ELECTROMAGNÉTICA Capítulo 1 SEMINARIO INDUCCIÓN ELECTROMAGNÉTICA 1. Una bobina de 50 espiras de 8 cm 2 está colocada en un campo magnético de manera que el que el flujo sea máximo. Si el campo varía de acuerdo con la función

Más detalles

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE 1- Una barra prismática de sección transversal circular está cargada por fuerzas P, de acuerdo a la figura siguiente.

Más detalles

MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS Y ELEMENTOS DE MÁQUINAS

MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS Y ELEMENTOS DE MÁQUINAS MECANISMOS Y SISTEMAS DE AERONAVES MECANISMOS Y ELEMENTOS DE MÁQUINAS TRABAJO PRÁCTICO TORNILLO Ejercicio Nº1 Sea el siguiente crique a tornillo con rosca cuadrada. Se tienen los siguientes datos: -Carga

Más detalles

Ingeniería Estructural. Inestabilidad elástica

Ingeniería Estructural. Inestabilidad elástica Ingeniería Estructural Inestabilidad elástica 1 andeo de pieas rectas Imaginemos una hoja de sierra σ 50 Ma Sección transversal 1mm 0.5mm a hoja de sierra resistiría una carga de compresión de 310 N Sin

Más detalles

4.-CALCULOS CONSTRUCTIVOS.

4.-CALCULOS CONSTRUCTIVOS. 4.-CALCULOS CONSTRUCTIVOS. Partimos de los siguientes datos: - Localización de la nave: Polígono Industrial Fuente-Techada, término municipal de Orgaz (Toledo). - Longitud de la nave: 49 m - Luz de la

Más detalles

EJERCICIOS. tal que 3 a + 2 b + 4 c = 0.

EJERCICIOS. tal que 3 a + 2 b + 4 c = 0. EJERCICIOS 1. Dados los vectores A = 2 î - 4 ĵ + 6 kˆ y B = î + 5 ĵ 9 kˆ, encontrar un vector c tal que 3 a + 2 b + 4 c = 0. 2. Dados los vectores A = 2 î - ĵ + 3 kˆ y B = 3 î + 4 ĵ + 6 kˆ, obtener el

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S DE GEOMETRÍA ANALÍTICA CONCEPTOS BÁSICOS 1.- Hallar la distancia entre los pares de puntos cuyas coordenadas son: a) A (4, 1), B (3, 2)

Más detalles

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1 GUÍA DE EJERCICIOS Física Aplicada 2 CUERPO RIGIDO 1º cuatrimestre de 2012 1 Modelos en Física Modelos Sólidos Fluidos No se considera su extensión ni orientación Partícula Se considera su extensión y

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

ESTÁTICA DE ESTRUCTURAS Guía # 1

ESTÁTICA DE ESTRUCTURAS Guía # 1 ESTÁTI DE ESTRUTURS Guía # 1 1. Para las siguientes figuras 1, 2 3, determinar los centros de gravedad, respecto al eje correspondiente. igura 1 igura 2 igura 3 2. Descomponga la fuera de 120[kgf] en dos

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12

PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 PROBLEMAS DE RESISTENCIA DE MATERIALES II GRUPOS M1 y T1 CURSO 2011-12 1.1.- Determinar la relación mínima entre la longitud y el diámetro de una barra recta de sección circular, para que al girar relativamente

Más detalles

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1 1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]

Más detalles

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch MENI PLI I. EXMEN FINL. 07-06-99. PIME EJEIIO TIEMPO: 50 x x x 1. educir a partir de las siguientes ecuaciones y = αch, ch sh = 1 α α α las expresiones de la longitud y la tensión de la catenaria ( puntos)..

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo doce: Ejemplo 10 Ejemplo diez. Se pide: Calcular las solicitaciones y dimensionar todos los elementos que componen el entrepiso de madera que se muestra en la planta

Más detalles

TAREA # 2 FISICA I FUERZAS Prof. Terenzio Soldovieri C.

TAREA # 2 FISICA I FUERZAS Prof. Terenzio Soldovieri C. la presente hoja ni reescribirla en su tarea (Sólo debe entregar los problemas marcados, los restantes son para ejercitación). Puntuación: 10 puntos, los cuales serán sumados a la sumatoria de la calificación

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Práctico 12: Pandeo de columnas(continuación)

Práctico 12: Pandeo de columnas(continuación) Ejercicio 1: Práctico 1: Pandeo de columnas(continuación) C P B y L h x y x b Lacolumna-Bdelafiguraestáempotradaensubase.Enlapartesuperiorestáimpedida dedesplazarseenladirecciónxporlabarrac-b.lacolumnaestásometidaaunacargaaxialp

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 3.- CORTADURA. 2.1.- Cortadura pura o cizalladura. Una pieza sufre fuerzas cortantes cuando dos secciones planas y paralelas

Más detalles

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular Mecánica de Sólidos UDA 3: Torsión en Ejes de Sección Circular 1 Definición y Limitaciones Se analizarán los efectos que produce la aplicación de una carga de torsión sobre un elemento largo y recto como

Más detalles

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 EJERCICIO Nº 1 ZAPATAS: CARGAS DE HUNDIMIENTO Una zapata

Más detalles
L'Arme fatale | Ayushman Bhav | Labyrinth Of Flames